当前位置: 萬仟网 > IT编程>网页制作>HTML > Pandas如何将表格的前几行生成html实战案例

Pandas如何将表格的前几行生成html实战案例

2022年08月23日 HTML 我要评论
一、pandas如何将表格的前几行生成html实战场景:pandas如何将表格的前几行生成html1.1主要知识点文件读写基础语法pandasnumpy实战:1.2创建 python 文件import

一、pandas如何将表格的前几行生成html

实战场景:pandas如何将表格的前几行生成html

1.1主要知识点

  • 文件读写
  • 基础语法
  • pandas
  • numpy

实战:

1.2创建 python 文件

import numpy as np
import pandas as pd
 
np.random.seed(66)
s1 = pd.series(np.random.rand(20))
s2 = pd.series(np.random.randn(20))
df = pd.concat([s1, s2], axis=1)
df.columns = ['col1', 'col2']
# df.head 取前5行
print(df.head(5).to_html())

1.3运行结果 

<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;"> 
      <th></th>
      <th>col1</th>
      <th>col2</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>0.154288</td>
      <td>-0.180981</td>
    </tr>
    <tr>
      <th>1</th>
      <td>0.133700</td>
      <td>-0.056043</td>
    </tr>
    <tr>
      <th>2</th>
      <td>0.362685</td>
      <td>-0.185062</td>
    </tr>
    <tr>
      <th>3</th>
      <td>0.679109</td>
      <td>-0.610935</td>
    </tr>
    <tr>
      <th>4</th>
      <td>0.194450</td>
      <td>-0.048804</td>
    </tr>
  </tbody>
</table>

二、pandas如何计算一列数字的中位数

实战场景:pandas如何计算一列数字的中位数

2.1主要知识点

  • 文件读写
  • 基础语法
  • pandas
  • numpy

实战:

2.2创建 python 文件

import numpy as np
import pandas as pd
 
np.random.seed(66)
s1 = pd.series(np.random.rand(20))
s2 = pd.series(np.random.randn(20))
 
df = pd.concat([s1, s2], axis=1)
df.columns = ['col1', 'col2']
 
 
#median直接算中位数
print(df["col2"].median())
#用50%分位数
print(df["col2"].quantile())

2.3运行结果

-0.2076894596485453
-0.2076894596485453

三、pandas如何获取某个数据列最大和最小的5个数

实战场景:pandas如何获取某个数据列最大和最小的5个数

3.1主要知识点

  • 文件读写
  • 数据合并
  • pandas
  • numpy

实战:

3.2创建 python 文件

iimport numpy as np
import pandas as pd
 
np.random.seed(66)
s1 = pd.series(np.random.rand(20))
s2 = pd.series(np.random.randn(20))
 
#合并两个series到df
df = pd.concat([s1, s2], axis=1)
df.columns = ['col1', 'col2']
 
# 取最大的五个数
 
print(df["col2"].nlargest(5))
print()
# 取最小的五个数
print(df["col2"].nsmallest(5))

3.3运行结果

12    1.607623
17    1.404255
19    0.675887
13    0.345030
name: col2, dtype: float64

16   -1.220877
18   -1.215324
11   -1.003714
8    -0.936607
5    -0.632613
name: col2, dtype: float64

四、pandas如何查看客户是否流失字段的数据映射

实战场景:pandas如何查看客户是否流失字段的数据映射

4.1主要知识点

  • 文件读写
  • 基础语法
  • pandas
  • numpy

4.2创建 python 文件

"""
churn:客户是否流失
yes -> 1
no -> 0
实现字符串到数字的映射
"""
import pandas as pd
df = pd.read_csv("telco-customer-churn.csv")

#返回取值,及其取值多少次
print(df["churn"].value_counts())
 
df["churn"] = df["churn"].map({"yes": 1, "no": 0})
print()
print(df["churn"].value_counts())
print(df.describe(include=["category"]))

4.3运行结果

no     5174
yes    1869
name: churn, dtype: int64

0    5174
1    1869
name: churn, dtype: int6

到此这篇关于pandas如何将表格的前几行生成html实战案例的文章就介绍到这了,更多相关pandas生成html内容请搜索萬仟网以前的文章或继续浏览下面的相关文章希望大家以后多多支持萬仟网!

(1)
打赏 微信扫一扫 微信扫一扫

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。

发表评论

验证码:
Copyright © 2017-2022  萬仟网 保留所有权利. 琼ICP备2022007597号