当前位置: 萬仟网 > IT编程>脚本编程>Python > python 实现表情识别

python 实现表情识别

2020年11月21日  | 萬仟网IT编程  | 我要评论
表情识别表情识别支持7种表情类型,生气、厌恶、恐惧、开心、难过、惊喜、平静等。实现思路使用opencv识别图片中的脸,在使用keras进行表情识别。效果预览实现代码与《》相似,本文表情识别也是使用ke

表情识别

表情识别支持7种表情类型,生气、厌恶、恐惧、开心、难过、惊喜、平静等。

实现思路

使用opencv识别图片中的脸,在使用keras进行表情识别。

效果预览

实现代码

与《》相似,本文表情识别也是使用keras实现的,和性别识别相同,型数据使用的是的,代码如下:

#coding=utf-8
#表情识别

import cv2
from keras.models import load_model
import numpy as np
import chinesetext
import datetime

starttime = datetime.datetime.now()
emotion_classifier = load_model(
  'classifier/emotion_models/simple_cnn.530-0.65.hdf5')
endtime = datetime.datetime.now()
print(endtime - starttime)

emotion_labels = {
  0: '生气',
  1: '厌恶',
  2: '恐惧',
  3: '开心',
  4: '难过',
  5: '惊喜',
  6: '平静'
}

img = cv2.imread("img/emotion/emotion.png")
face_classifier = cv2.cascadeclassifier(
  "c:\python36\lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
gray = cv2.cvtcolor(img, cv2.color_bgr2gray)
faces = face_classifier.detectmultiscale(
  gray, scalefactor=1.2, minneighbors=3, minsize=(40, 40))
color = (255, 0, 0)

for (x, y, w, h) in faces:
  gray_face = gray[(y):(y + h), (x):(x + w)]
  gray_face = cv2.resize(gray_face, (48, 48))
  gray_face = gray_face / 255.0
  gray_face = np.expand_dims(gray_face, 0)
  gray_face = np.expand_dims(gray_face, -1)
  emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
  emotion = emotion_labels[emotion_label_arg]
  cv2.rectangle(img, (x + 10, y + 10), (x + h - 10, y + w - 10),
         (255, 255, 255), 2)
  img = chinesetext.cv2imgaddtext(img, emotion, x + h * 0.3, y, color, 20)

cv2.imshow("image", img)
cv2.waitkey(0)
cv2.destroyallwindows()

以上就是python 实现表情识别的详细内容,更多关于python 表情识别的资料请关注萬仟网其它相关文章!

如您对本文有疑问或者有任何想说的,请点击进行留言回复,万千网友为您解惑!

相关文章:

验证码:
Copyright © 2017-2020  萬仟网 保留所有权利. 粤ICP备17035492号-1