当前位置: 萬仟网 > 互联网>大数据 > (互动出版网)数据挖掘教程报价/互动出版网数据库基础知识类图书

(互动出版网)数据挖掘教程报价/互动出版网数据库基础知识类图书

183  人参与 | 时间:2018-06-01 | 我要评论

数据挖掘教程 描述

第I部分 数据挖掘基础 第1章 数据挖掘:初探 1.1 数据挖掘:定义 1.2 计算机可以学习什么 1.3 数据挖掘是否适合自身的问题 1.4 采用专家系统还是数据挖掘 1.5 一个简单的数据挖掘处理模型 1.6 为什么不进行简单的搜索 1.7 数据挖掘应用 1.8 本章小结 1.9 关键术语 1.10 练习 第2章 数据挖掘:深入讨论 2.1 数据挖掘策略 2.2 有指导的数据挖掘技术 2.3 关联规则 2.4 聚类技术 2. 5 评估性能 2.6 本章小结 2.7 关键术语 .2.8 练习 第3章 基本数据挖掘技术 3.1 决策树 3.2 生成关联规则 3.3 K-平均值算法 3.4 遗传学习 3.5 选择一种数据挖掘技术 3.6 本章小结 3.7 关键术语 3.8 练习 第4章 基于Excel的数据挖掘工具 4.1 iData分析器 4.2 ESX:一种多用途的数据挖掘工具 4.3 iDAV格式的数据挖掘 4.4 用于无指导聚类的5步法 4.5 用于有指导学习的6步法 4.6 生成规则技术 4.7 实例典型性 4.8 特别考虑和特性 4.9 本章小结 4.10 关键术语 4.11 练习 第II部分 知识发现工具 第5章 数据库中的知识发现 5.1 一种KDD过程模型 5.2 步骤1:目标定义 5.3 步骤2:创建目标数据集 5.4 步骤3:数据预处理 5.5 步骤4:数据转换 5.6 步骤5:数据挖掘 5.7 步骤6:解释和评估 5.8 步骤7:采取行动 5.9 CRISP-DM过程模型 5.10 ESX实验 5.11 本章小结 5.12 关键术语 5.13 练习 第6章 数据仓库 6.1 操作型数据库 6.2 设计数据仓库 6.3 联机分析处理 6.4 用Excel数据透视表分析数据 6. 5 本章小结 6.6 关键术语 6.7 练习 第7章 形式评估技术 7.1 评估对象 7. 2 评估工具 7.3 计算检验集置信区间 7.4 比较有指导学习者模型 7.5 属性评估 7.6 无指导评估技术 7.7 评估具有数值输出的有指导模型 7.8 本章小结 7.9 关键术语 7.10 练习 第Ⅲ部分 高级数据捌 第8章 神经网络 8.1 前馈神经网络 8.2 神经网络训练:概念介绍 8.4 一般考虑 8.5 神经网络训练:详细说明 8.6 本章小结 8.7 关键术语 8.8 练习 第9章 使用iDA建立神经网络 9.1 反向传播学习的4步法 9.2 神经网络聚类4步法 9.3 使用ESX进行神经网络簇分析 9.4 本章小结 9.5 关键术语 9.6 练习 第10章 统计技术 10.1 线性

如对本文有疑问,请在下面进行留言讨论,广大热心网友会与你互动!! 点击进行留言回复

相关文章:

◎已有 0 人评论

Copyright © 2019  萬仟网 保留所有权利. 粤ICP备17035492号-1
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com